Data-based Reconstruction of Gene Regulatory Networks of Fungal Pathogens
نویسندگان
چکیده
In the emerging field of systems biology of fungal infection, one of the central roles belongs to the modeling of gene regulatory networks (GRNs). Utilizing omics-data, GRNs can be predicted by mathematical modeling. Here, we review current advances of data-based reconstruction of both small-scale and large-scale GRNs for human pathogenic fungi. The advantage of large-scale genome-wide modeling is the possibility to predict central (hub) genes and thereby indicate potential biomarkers and drug targets. In contrast, small-scale GRN models provide hypotheses on the mode of gene regulatory interactions, which have to be validated experimentally. Due to the lack of sufficient quantity and quality of both experimental data and prior knowledge about regulator-target gene relations, the genome-wide modeling still remains problematic for fungal pathogens. While a first genome-wide GRN model has already been published for Candida albicans, the feasibility of such modeling for Aspergillus fumigatus is evaluated in the present article. Based on this evaluation, opinions are drawn on future directions of GRN modeling of fungal pathogens. The crucial point of genome-wide GRN modeling is the experimental evidence, both used for inferring the networks (omics 'first-hand' data as well as literature data used as prior knowledge) and for validation and evaluation of the inferred network models.
منابع مشابه
H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کاملTranscriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison
Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of v...
متن کاملModeling gene regulatory networks: Classical models, optimal perturbation for identification of network
Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption. On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications. This is not an unrealistic goal since genes which are regulated by gene regulatory ...
متن کاملNetwork-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملImproving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach
Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016